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Abstract - Accurate simulation of highly conductive 
materials such as copper at RF and microwave frequency has 
presented a great challenge with the conventional FDTD 
method. The reasun is that for a FDTD recursive computation 
to be accurate and stable, the FDTD time step has to he very 
small, leading to sometimes a prohibitively large number of 
iterations. In this paper, the recently developed 
uneondltionally stable ADI-FDTD method is revised and 
applied to solve the problem. It is shown, through the 
examples of computation of body of rotational (BOR) cavities 
with highly eonduetlve walls, that the highly conductive 
materials can now be accurately simulated. In addition, a 
general uucondltlunaUy stable cylindrical ADI-FDTD 
formulation is developed to facilitate the computation of 
cylindrical structures with eonductlve loss. 

I. INTRODUCTION 

The FDTD of Ye&s scheme has been widely used to 
solve various electromagnetic problems [l]. In theory, it 
can be applied to compute arbitrary media including 
highly conductive materials. In practice, however, due to 
the CFL stability condition and numerical dispersion, the 
time step for a FDTD mesh in a highly conductive region 
becomes so small at RF and microwave frequencies that 
the number of iteration becomes prohibitively huge. As a 
result, approximating approaches, such as Surface 
Impedance Boundary Condition (SIBC) and perturbation 
techniques, were developed with the assumption of plane 
waves impinging on the conducting boundaries or 
unperturbed fields in the unperturbed regions [2]. These 
methods, though presenting good results in many cases, 
remain to be of approximations in nature and fail in some 
special cases. 

The recently developed 3-D ADI-FDTD method 
[3][4], however, presents a potential solution for 
simulating highly conductive media. The reason is that the 
ADI-FDTD method is unconditionally stable, and allows 
the independent selections of time step and space step. 
Consequently, the ADI-FDTD becomes very suitable for 
solving the structures in which fine mesh is indispensable 
without considering the CFL condition [5]. An application 
of the ADI-FDTD based on this property was reported in 
[6] for computing shielding effectiveness of thin conductor 

stmchues at low frequencies. Nevertheless, there has been 
no report on simulation of highly conductive materials at 
RF/Microwave frequencies. In this paper, the ADI-FDTD 
is extended to modeling highly conductive materials at RF 
and microwave frequencies. The effectiveness and 
efficiency of the ADI-FDTD are validated through the 
computations of Q-factors and resonant frequencies of 
body of rotational (BOR) cavities. As well, a general 
cylindrical ADI-FDTD formulation is developed to 
facilitate the computation of cylindrical structures. 

This paper is organized in the following manner: 
Section II gives the newly developed formulation of the 
cylindrical ADI-FDTD for BOR structures. Section Ill 
presents the numerical results and analysis. Section IV is 
the summary and conclusions. 

II. NEWLY DEVELOPED FORMULATION OF 
CYLINDRICAL ADI-FDTD FOR THE STRUCTURES 

WITH CONDUCTING WALLS 

Starting from Maxwell’s equations, the relationship 
between electric field and magnetic field in the cylindrical 
coordinates in a lossy source free medium can be written 
as: 

(1) 

By applying the ADI-FDTD method to the Maxwell’s 
equations as described in [4], 12 equations can be obtained 
in two sub time steps respectively. For instance, equation 
(1) can be broken into hvo sub-step computation as in the 
following: 

at the first half time step (i.e. at the (n+1/2)” time 
SteD): 

(2a) -7:: -._ 
L; 
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at the second half time step (i.e. at the (n+l)’ time 
step): 

,s & 

m+e= 
2): I ii ,~~ 2 (PjJ.Q- (2b) 
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However, in this form, the coefficient of the field 

value of present time can be zero when it reaches the 
threshold: 

ADI-FDTD algorithm for the materials with both high 
conductivity and low conductivity. 

111. NUMERICAL VERIFICATIONS 

In this section, two sample structures are computed 
with the revised ADI-FDTD algorithm one is a cylindrical 
cavity with copper enclosure and the other is a cylindrical 
cavity with lossless walls tilled with a slightly lossy 
medium. Detailed comparisons of resonant frequencies 
and Q-factors with the theoretical results are also 
presented. 

4E 
0 a== (3) 

A. Cylindrical Cavity with High Conducfivity Walls 

Usually this threshold conductivity value is relatively 
low. For example, if Ar = AZ = 1 cm, A@ = 2~ / 20 rad, 
takiig the Courant time step limit, the threshold 
conductivity iso, = 6.9~1 m For greater conductivity 
values, the co&cient will become a negative value, which 
makes equations (2a) (2b) unusable. To overcome this 
problem, Lubben et al. [7] suggested using the most 
recent value of electric field in computing conduction 
currents. In the ADI-FDTD algorithm, it turns out to be 
UE = uE”+“~ for the first half time step and 
UE = &“+I for the second half time step. As a result, the 
revised ADI-FDTD equations of (2a) (2b) can be derived 
as: 

Fig. 1 shows the hollow cylindrical cavity under 
study. Since Q-factor is a parameter that measures the 
losses in a certain structure, it is used as the quality to be 
computed with the ADI-FDTD. For the hollow cavities, 
there only exists conducting loss that needs to be taken 
into account for the computation of the Q-factors. 

LD 
2cm 

64 (b) 
Fig. 1. The geometry of the selected cylindrical cavity: (a) 
Side view(b) Bottom view 

for the second half time step 

To effect the realistic computation without losing 
modeling accuracy, the thickness of the conducting wall 
should be fmite. In our case, a conducting layer beneath 
the air-conductor interface with a thickness of several 
times of the skin depth is taken to represent the whole 
conducting wall in computations of conducting loss. The 
justiiication is that the fields further down after the layer in 
the conductor are supposedly to be negligible small due to 
the strong skin depth effect at RF and microwave 
frequencies. In our case, we took a layer of three times of 
the skin depth obtained with the lowest frequency under 
interest as the thickness of the conductor. For the sample 
structu~c, the lowest frequency is about 11 GHz and thus 
the skin depth is about 0.63 pm. The thickness of the 
conductor was then taken to be 2.0 pm (see Fig. 2). 

Note the threshold conductivity disappears in the To reduce local numerical errors, a gradually 
revised equations. In this way, the revised ADI-FDTD decreased cell size is applied to the air-tilled area and a 
method can be applied to the materials with high uniform fine grid to the metal area in the radial direction 
conductivities. In fact the revised ADI-FDTD is also and the z-direction, respectively (see Fig.2). The minimum 
feasible for the materials with low conductivities, as will ceil size in the air tilled area is equal to the cell size in the 
be shown later. In the following section, numerical conducting region. The adjacent cell sizes in the air-filled 
verification is presented to prove the validity of the revised area have the following relationship [ 11: 

1136 



OSAr,., = A’, = ZAr,,, 
0.5Az,., = AZ, = 2Ar,,, 

(5) However, even with this large time step, it still needs 
800,000 iterations to get IMHz frequency resolution. 
Therefore it is desired to find other techniques that can 
further enhance the frequency resolution with less time 
domain data. 

Fig. 2. (a) Non!Afonn mesh in$!e air-filled area (b) Uiform 
fine mesh inside the conducting walls 

Note that the first cell starts at the center of the cavity 
in the z-direction, and the relationship in (5) applies in 
both radial and z-direction. In the angular direction, a 
uniform mesh is used due to its homogeneousness in the 
direction. 

With the meshing method described above, a 
50X8X100 grid was generated. By recording the time 
domain signature at a certain grid point in the st~chue and 
then using FFT, the mode frequencies can be obtained. 
The unloaded Q-factor of each mode can then be 
calculated with: 

where f,is a certain resonant frequency and wis the 
corresponding 3-dB bandwidth. 

In order to get correct4f in (6). an appropriate 
frequency resolution is required. In other words, sufficient 
simulation duration in time is necessary with the FFT 
method. For a high Q stmchre, the 3-dB bandwidth is 
usually very small compared to the center frequency. This 
means that a high number of iteration is required. For 
example, if we use conventional FDTD and applying the 
tine mesh described above, the time step is 7.68X10” 
picoseconds at most (due to the CFL limit). To get a 1 
MHz frequency resolution, 1.3 billion iterations are 
required, which makes the conventional FDTD impractical 
for calculating the Q-factor. In addition, since too many 
iteration steps are needed to collect enough time domain 
information, the calculated Q-factor is unrealistically high 
due to the computer-generated errors with conventional 
FDTD method [8]. 

With the unconditionally stable ADI-FDTD method 
the time step is only restricted by numerical accuracy. In 
our case the time step is taken to be 1.26 picoseconds, 
about 16380 times of that with the conventional FDTD. 

There are several methods that can provide good 
frequency resolution with less time domain data, such as 
Prony’s method, the generalized pencil-of-function method 
and FFT/Pad& method. Since the first two methods are 
sensitive to the sampling condition [9], the FFTiPadt 
approximation is applied to process the FFT outputs. The 
detailed description of FFTiPade method can be found in 
PI. 

Fig. 3 illustrates the improvement of FFTiPad& 
method compared to FFT method with only 4,096 time 
domain samples with the ADI-FDTD method. The original 
frequency resolution is 194 MHz. The greatly refined 
frequency resolution is 0.13 MHz. As a result, the Q- 
factors are obtainable with much fewer iterations. It should 
be noted that even if with the FFT/PadC method, the 
conventional FDTD is difficult to implement since it still 
needs at least 1.2 million iterations. 

Fig. 3. The comparison between FFT and FFTiPad& method 
for a cenain mode with the cylindrical ADI-FDTD method 

Table I shows the computed resonant frequencies of a 
few modes and their comparisons with the theoretical 
values [lo]. 

TABLE I 
RESONANT FREQUENCIES WITH PRESENTED 

METHODS 

Modes I” theory This work Relative 
(GHZ) [lo] @Hz) Difference (%) 

TMmo 11.483 11.442 +0.35 
WI, 13.314 13.114 +1.50 
T&II 15.227 15.185 +0.28 
TWIO 18.300 17.781 +2.84 

Table II shows the Q-factor of each mode and the 
comparisons with the theoretical values. As can be seen, 
the computed results well agree with the theoretical ones. 
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TABLE II 
Q-FACTOR OF EACH MODE WITH PRESENTED 

METHODS 

Modes I” theory This Relative Difference 
[lo] work %) 

‘WIO 9129 1 9829 -1.03 
T&II 10868 . I 11152, -2.61 
T&I I 8002 ) 8100 -1.22 

‘Mm 1 12281 1 12571 1 -2.36 I 

B Cylindrical Cavity Filled with Lossy Medium 

Dielectric loss is another kind of loss in a certain 
microwave structure where lossy dielectric materials exist 
in the stmctwe. This kind of loss is caused by the effective 
conductivity of the dielectric material, which is related to 
the loss tangent through: 

cTefl =m&tan6 (7) 

Usually the effective conductivity of a lossy dielectric 
is of small value. For instance, the loss tangent of silicon at 
10 GHz is 0.004. The effective conductivity is thus 0.0264 
S/m obtained with (7). 

To test the suitability of the proposed ADI-FDTD 
method for computing dielectric loss, an experiment is 
conducted for a cylindrical cavity of 21Onun in diameter 
and 25.4mm in height with lossless walls, filled with a 
slightly IOSSY medium. The conductivity is 
CT = O.OOlS lm at the resonant frequency. 

Because the tine mesh is no longer necessary for 
computing this sttuctwe, a uniform 16X 16X 15 mesh is 
applied to the whole computation area. The time step is 
four times of the CFL limit, which is 13.0 picoseconds. 
Again FFT/Padt method is used to obtain frequency 
response as well as Q-factor. Table III shows the 
simulation results of Tmlo mode. As can be seen, the 
revised ADI-FDTD method is also effective for computing 
the low conductivity materials. 

TABLE III Q-FACTOR OF TM,,,0 MODE WITH 
PRESENTED METHOD 

I” theory This work Relative Error 
[II] 

Q-factor 60.81 60.52 +0.47% 

f,(hMz) 1093.6 1092.6 +0.09% 

III. CONCLUSIONS 

A revised cylindrical ADI-FDTD algorithm combined 
with FFT/Pade method is presented for accu’ately 

computing the BOR structtues with highly conductive 
walls. The proposed unconditional stable method is found 
to be efficient and effective in computing the loss for both 
high conductivity materials and low conductivity 
materials. 

The unconditional stable ADI-FDTD method in this 
paper can be iixther extended to predict the loss of mare 
complex strwtllres, such as highly conductive thin film 
strwtures and attenuation loss of transmission lines. 
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